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Week 4.1 - Introduction to N-grams
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• A model to assign a probability to a sentence 
o Machine Translation: 
o P(high winds tonight) > P(large winds tonight)

o Spell Correction 
o The office is about fifteen minuets from my house! 

• P(about fifteen minutes from) > P(about fifteen minuets from) 

o Speech Recognition

o P(I saw a van) >> P(eyes awe of an)  

o + Summarization, question, answering, etc., etc.!!

What is a Language Model?

3
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• Goal: compute the probability of a sentence or sequence of words:

     P(W) = P(w1,w2,w3,w4,w5…wn)

• Related task: probability of an upcoming word:
      P(w5|w1,w2,w3,w4)

• A model that computes either of these:

          P(W)     or     P(wn|w1,w2…wn-1)          is called a language model.

• Better: the grammar       But language model or LM is standard

Probabilistic Language Modeling

4
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• How to compute this joint probability:

oP(its, water, is, so, transparent, that)

• Intuition: let’s rely on the Chain Rule of Probability

How to compute P(W)

5
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• Recall the definition of conditional probabilities

p(B|A) = P(A,B)/P(A) Rewriting:   P(A,B) = P(A)P(B|A)

• More variables:
 P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)

• The Chain Rule in General

  P(x1,x2,x3,…,xn) = P(x1)P(x2|x1)P(x3|x1,x2)…P(xn|x1,…,xn-1)

Reminder: The Chain Rule

6
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P(“its water is so transparent”) =

 P(its) × P(water|its) ×  P(is|its water) 

         ×  P(so|its water is) ×  P(transparent|its water is so)

The Chain Rule applied to compute joint probability of words in 
sentence

7

  

€ 

P(w1w2…wn ) = P(wi |w1w2…wi−1)
i
∏
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• Could we just count and divide?

• No!  Too many possible sentences!

• We’ll never see enough data for estimating these

How to estimate these probabilities
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€ 

P(the | its water is so transparent that) =

Count(its water is so transparent that the)
Count(its water is so transparent that)
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• Simplifying assumption:

• Or maybe

Markov Assumption
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€ 

P(the | its water is so transparent that) ≈ P(the | that)

€ 

P(the | its water is so transparent that) ≈ P(the | transparent that)

Andrei Markov
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• In other words, we approximate each component in the product

Markov Assumption
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€ 

P(w1w2…wn ) ≈ P(wi |wi−k…wi−1)
i
∏

  

€ 

P(wi |w1w2…wi−1) ≈ P(wi |wi−k…wi−1)
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• Some automatically generated sentences from a unigram model

fifth, an, of, futures, the, an, incorporated, a, a, the, 
inflation, most, dollars, quarter, in, is, mass

thrift, did, eighty, said, hard, 'm, july, bullish

that, or, limited, the

Simplest case: Unigram model
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€ 

P(w1w2…wn ) ≈ P(wi)
i
∏
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• Condition on the previous word:

texaco, rose, one, in, this, issue, is, pursuing, growth, in, a, 
boiler, house, said, mr., gurria, mexico, 's, motion, control, 
proposal, without, permission, from, five, hundred, fifty, five, yen

outside, new, car, parking, lot, of, the, agreement, reached

this, would, be, a, record, november

Bigram model
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€ 

P(wi |w1w2…wi−1) ≈ P(wi |wi−1)
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• We can extend to trigrams, 4-grams, 5-grams

• In general this is an insufficient model of language

o because language has long-distance dependencies:

“The computer which I had just put into the machine room on the fifth floor crashed.”

• But we can often get away with N-gram models

N-gram models

13
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Week 4.2 - Estimating N-gram 
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• The Maximum Likelihood Estimate

Estimating bigram probabilities
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€ 

P(wi |wi−1) =
count(wi−1,wi)
count(wi−1)

€ 

P(wi |wi−1) =
c(wi−1,wi)
c(wi−1)
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An example

16

<s> I am Sam </s>

<s> Sam I am </s>

<s> I do not like green eggs and ham </s>

€ 

P(wi |wi−1) =
c(wi−1,wi)
c(wi−1)
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• can you tell me about any good cantonese restaurants close by

• mid priced thai food is what i’m looking for

• tell me about chez panisse

• can you give me a listing of the kinds of food that are available

• i’m looking for a good place to eat breakfast

• when is caffe venezia open during the day

More examples: 
Berkeley Restaurant Project sentences

17
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• Out of 9,222 sentences

Raw bigram counts

18
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• Normalize by unigrams:

• Result:

Raw bigram probabilities

19
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P(<s> I want english food </s>) =

 P(I|<s>)   

 ×  P(want|I)  

 ×  P(english|want)   

 ×  P(food|english)   

 ×  P(</s>|food)

       =  .000031

Bigram estimates of sentence probabilities

20
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• P(english|want)  = .0011

• P(chinese|want) =  .0065

• P(to|want) = .66

• P(eat | to) = .28

• P(food | to) = 0

• P(want | spend) = 0

• P (i | <s>) = .25

What kinds of knowledge?

21
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• We do everything in log space

oAvoid underflow

o(also adding is faster than multiplying)

Practical Issues

22

log(p1 × p2 × p3 × p4 ) = log p1 + log p2 + log p3 + log p4
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• SRILM

ohttp://www.speech.sri.com/projects/srilm/

• KenLM

ohttps://kheafield.com/code/kenlm/

Language Modeling Toolkits

23
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Google N-Gram Release, August 2006

24

…
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• serve as the incoming 92
• serve as the incubator 99
• serve as the independent 794
• serve as the index 223
• serve as the indication 72
• serve as the indicator 120
• serve as the indicators 45
• serve as the indispensable 111
• serve as the indispensible 40
• serve as the individual 234

Google N-Gram Release
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http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

25
D e a k in  U n iv e r s it y  C R IC O S  P r o v id e r  C o d e :  0 0 1 1 3 B

• https://books.google.com/ngrams/

Google Book N-grams
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• "Extrinsic (in-vivo) Evaluation"

To compare models A and B
1. Put each model in a real task

• Machine Translation, speech recognition, etc. 

2. Run the task, get a score for A and for B
• How many words translated correctly

• How many words transcribed correctly

3. Compare accuracy for A and B

How to evaluate N-gram models

28
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• Extrinsic evaluation not always possible
• Expensive, time-consuming 

• Doesn't always generalize to other applications

• Intrinsic evaluation: perplexity

• Directly measures language model performance at predicting words.

• Doesn't necessarily correspond with real application performance

• But gives us a single general metric for language models

• Useful for large language models (LLMs) as well as n-grams

Intrinsic (in-vitro) evaluation 

29
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• We train parameters of our model on a training set.

• We test the model’s performance on data we haven’t seen.

o A test set is an unseen dataset; different from training set.

o Intuition: we want to measure generalization to unseen data

o An evaluation metric (like perplexity) tells us how well our model does on the test set.

Training sets and test sets

30
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• If we're building an LM for a specific task

• The test set should reflect the task language we want to use the model for

• If we're building a general-purpose model
• We'll need lots of different kinds of training data

• We don't want the training set or the test set to be just from one domain 

or author or language.

Choosing training and test sets

31

31
D e a k in  U n iv e r s it y  C R IC O S  P r o v id e r  C o d e :  0 0 1 1 3 B

We can’t allow test sentences into the training set
• Or else the LM will assign that sentence an artificially high probability when we see it in 

the test set

• And hence assign the whole test set a falsely high probability.

• Making the LM look better than it really is

This is called “Training on the test set”

Bad science! 

Training on the test set

32
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• If we test on the test set many times we might implicitly tune to its 

characteristics

•Noticing which changes make the model better. 

•So we run on the test set only once, or a few times

•That means we need a third dataset: 
• A development test set or, devset. 

•We test our LM on the devset until the very end

• And then test our LM on the test set once

Dev sets

33
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• Intuition: A good LM prefers "real" sentences 

oAssign higher probability to “real” or “frequently observed” 

sentences 

oAssigns lower probability to “word salad” or “rarely observed” 

sentences?

Intuition of perplexity as evaluation metric: How good is our 
language model?

34
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The Shannon Game: How well can we predict the next 

word?

•  Once upon a ____

•  That is a picture of a  ____

•  For breakfast I ate my usual ____

Unigrams are terrible at this game (Why?)

A good LM is one that assigns a higher probability to the 

next word that actually occurs

Intuition of perplexity 2: Predicting upcoming words

35

Claude Shannon

time 0.9
dream 0.03

midnight 0.02

…

and 1e-100

35
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• We said: a good LM is one that assigns a higher probability to the next word 

that actually occurs. 

• Let's generalize to all the words!
• The best LM assigns high probability to the entire test set.

• When comparing two LMs, A and B
• We compute PA(test set) and PB(test set)

• The better LM will give a higher probability to (=be less surprised by) the test set than 

the other LM.

Intuition of perplexity 3: The best language model is one that 
best predicts the entire unseen test set

36
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• Probability depends on size of test set
• Probability gets smaller the longer the text

• Better: a metric that is per-word, normalized by length

• Perplexity is the inverse probability of the test set, normalized by the 

number of words

Intuition of perplexity 4: Use perplexity instead of raw 
probability

37

PP(W ) = P(w1w2...wN )
−

1
N

           =
1

P(w1w2...wN )
N
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Perplexity is the inverse probability of the test set, normalized by the number of words

(The inverse comes from the original definition of perplexity from cross-entropy rate in 
information theory)

Probability range is  [0,1], perplexity range is [1,∞]
Minimizing perplexity is the same as maximizing probability

Intuition of perplexity 5: the inverse

38

PP(W ) = P(w1w2...wN )
−

1
N

           =
1

P(w1w2...wN )
N
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Intuition of perplexity 6: N-grams

39

PP(W ) = P(w1w2...wN )
−

1
N

           =
1

P(w1w2...wN )
N

Bigrams:

Chain rule:

39
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• Perplexity is also the weighted average branching factor of a language. 

• Branching factor: number of possible next words that can follow any word

• Example: Deterministic language L = {red,blue, green} 
o Branching factor = 3 (any word can be followed by red, blue, green)

• Now assume LM A where each word follows any other word with equal probability ⅓
• Given a test set T = "red red red red blue”

o PerplexityA(T) = PA(red red red red blue)-1/5 = 

• But now suppose red was very likely in training set, such that for LM B:
o P(red) = .8   p(green) = .1  p(blue) = .1

• We would expect the probability to be higher, and hence the perplexity to be smaller:
o PerplexityB(T) = PB(red red red red blue)-1/5 

Intuition of perplexity 7: 
Weighted average branching factor

40

((⅓)5)-1 /5 = (⅓)-1 =3
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• Training 38 million words, test 1.5 million words, WSJ

Holding test set constant:
Lower perplexity = better language model

41

N-gram Order Unigram Bigram Trigram

Perplexity 962 170 109
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Week 4.4 - Sampling and Generalization

SIT330-770: Natural 
Language Processing

42

Dr. Mohamed Reda Bouadjenek 

School of Information Technology, 
Faculty of Sci Eng & Built Env

42



3/27/24

8

D e a k in  U n iv e r s it y  C R IC O S  P r o v id e r  C o d e :  0 0 1 1 3 B

• Unigram:
REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN DIFFERENT 
NATURAL HERE HE THE A IN CAME THE TO OF TO EXPERT GRAY COME TO 
FURNISHES THE LINE MESSAGE HAD BE THESE. 

• Bigram:
THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE 
CHARACTER OF THIS POINT IS THEREFORE ANOTHER METHOD FOR THE LETTERS 
THAT THE TIME OF WHO EVER TOLD THE PROBLEM FOR AN UNEXPECTED.

The Shannon (1948) Visualization Method
Sample words from an LM

43

Claude Shannon
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"Open a book at random and select a letter at random on the page. This letter is 

recorded. The book is then opened to another page and one reads until this letter is 

encountered. The succeeding letter is then recorded. Turning to another page this 

second letter is searched for and the succeeding letter recorded, etc."

How Shannon sampled those words in 1948

44
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Sampling a word from a distribution

45

0 1

0.06

the

.06

0.03

of
0.02

a
0.02

to in

.09 .11 .13 .15
…

however
(p=.0003)

polyphonic
p=.0000018

…0.02

.66 .99
…

45
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Visualizing Bigrams the Shannon Way

46

Choose a random bigram (<s>, w) 

        according to its probability p(w|<s>)

Now choose a random bigram        (w, x) 
according to its probability p(x|w)

And so on until we choose </s>

Then string the words together

<s> I
    I want
      want to
           to eat
              eat Chinese
                  Chinese food
                          food </s>
I want to eat Chinese food

46
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• Used for neural language models

• Many of them avoid generating words from the very unlikely tail of the 

distribution

• We'll discuss when we get to neural LM decoding:

o Temperature sampling

o Top-k sampling

o Top-p sampling

Note: there are other sampling methods

47

47
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Approximating Shakespeare

48

12 CHAPTER 3 • N-GRAM LANGUAGE MODELS

given training corpus. Another implication is that n-grams do a better and better job
of modeling the training corpus as we increase the value of N.

We can use the sampling method from the prior section to visualize both of
these facts! To give an intuition for the increasing power of higher-order n-grams,
Fig. 3.4 shows random sentences generated from unigram, bigram, trigram, and 4-
gram models trained on Shakespeare’s works.

1
–To him swallowed confess hear both. Which. Of save on trail for are ay device and
rote life have

gram –Hill he late speaks; or! a more to leg less first you enter

2
–Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live
king. Follow.

gram –What means, sir. I confess she? then all sorts, he is trim, captain.

3
–Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,
’tis done.

gram –This shall forbid it should be branded, if renown made it empty.

4
–King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
great banquet serv’d in;

gram –It cannot be but so.
Figure 3.4 Eight sentences randomly generated from four n-grams computed from Shakespeare’s works. All
characters were mapped to lower-case and punctuation marks were treated as words. Output is hand-corrected
for capitalization to improve readability.

The longer the context on which we train the model, the more coherent the sen-
tences. In the unigram sentences, there is no coherent relation between words or any
sentence-final punctuation. The bigram sentences have some local word-to-word
coherence (especially if we consider that punctuation counts as a word). The tri-
gram and 4-gram sentences are beginning to look a lot like Shakespeare. Indeed, a
careful investigation of the 4-gram sentences shows that they look a little too much
like Shakespeare. The words It cannot be but so are directly from King John. This is
because, not to put the knock on Shakespeare, his oeuvre is not very large as corpora
go (N = 884,647,V = 29,066), and our n-gram probability matrices are ridiculously
sparse. There are V 2 = 844,000,000 possible bigrams alone, and the number of pos-
sible 4-grams is V 4 = 7⇥1017. Thus, once the generator has chosen the first 3-gram
(It cannot be), there are only seven possible next words for the 4th element (but, I,
that, thus, this, and the period).

To get an idea of the dependence of a grammar on its training set, let’s look at an
n-gram grammar trained on a completely different corpus: the Wall Street Journal
(WSJ) newspaper. Shakespeare and the Wall Street Journal are both English, so
we might expect some overlap between our n-grams for the two genres. Fig. 3.5
shows sentences generated by unigram, bigram, and trigram grammars trained on
40 million words from WSJ.

Compare these examples to the pseudo-Shakespeare in Fig. 3.4. While they both
model “English-like sentences”, there is clearly no overlap in generated sentences,
and little overlap even in small phrases. Statistical models are likely to be pretty use-
less as predictors if the training sets and the test sets are as different as Shakespeare
and WSJ.

How should we deal with this problem when we build n-gram models? One step
is to be sure to use a training corpus that has a similar genre to whatever task we are
trying to accomplish. To build a language model for translating legal documents,

48
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N=884,647 tokens, V=29,066

Shakespeare produced 300,000 bigram types out of V2= 844 million possible 

bigrams.
o So 99.96% of the possible bigrams were never seen (have zero entries in the table)

o That sparsity is even worse for 4-grams, explaining why our sampling generated actual 

Shakespeare.

Shakespeare as corpus

49

49
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The Wall Street Journal is not Shakespeare

50

3.5 • GENERALIZATION AND ZEROS 13

1 Months the my and issue of year foreign new exchange’s september
were recession exchange new endorsed a acquire to six executives

gram

2
Last December through the way to preserve the Hudson corporation N.
B. E. C. Taylor would seem to complete the major central planners one

gram point five percent of U. S. E. has already old M. X. corporation of living
on information such as more frequently fishing to keep her

3
They also point to ninety nine point six billion dollars from two hundred
four oh six three percent of the rates of interest stores as Mexico and

gram Brazil on market conditions
Figure 3.5 Three sentences randomly generated from three n-gram models computed from
40 million words of the Wall Street Journal, lower-casing all characters and treating punctua-
tion as words. Output was then hand-corrected for capitalization to improve readability.

we need a training corpus of legal documents. To build a language model for a
question-answering system, we need a training corpus of questions.

It is equally important to get training data in the appropriate dialect or variety,
especially when processing social media posts or spoken transcripts. For exam-
ple some tweets will use features of African American English (AAE)— the name
for the many variations of language used in African American communities (King,
2020). Such features include words like finna—an auxiliary verb that marks imme-
diate future tense —that don’t occur in other varieties, or spellings like den for then,
in tweets like this one (Blodgett and O’Connor, 2017):

(3.19) Bored af den my phone finna die!!!

while tweets from varieties like Nigerian English have markedly different vocabu-
lary and n-gram patterns from American English (Jurgens et al., 2017):

(3.20) @username R u a wizard or wat gan sef: in d mornin - u tweet, afternoon - u
tweet, nyt gan u dey tweet. beta get ur IT placement wiv twitter

Matching genres and dialects is still not sufficient. Our models may still be
subject to the problem of sparsity. For any n-gram that occurred a sufficient number
of times, we might have a good estimate of its probability. But because any corpus is
limited, some perfectly acceptable English word sequences are bound to be missing
from it. That is, we’ll have many cases of putative “zero probability n-grams” that
should really have some non-zero probability. Consider the words that follow the
bigram denied the in the WSJ Treebank3 corpus, together with their counts:

denied the allegations: 5
denied the speculation: 2
denied the rumors: 1
denied the report: 1

But suppose our test set has phrases like:
denied the offer
denied the loan

Our model will incorrectly estimate that the P(offer|denied the) is 0!
These zeros—things that don’t ever occur in the training set but do occur inzeros

the test set—are a problem for two reasons. First, their presence means we are
underestimating the probability of all sorts of words that might occur, which will
hurt the performance of any application we want to run on this data.

Second, if the probability of any word in the test set is 0, the entire probability
of the test set is 0. By definition, perplexity is based on the inverse probability of the

50
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1) They also point to ninety nine point six billion dollars 

from two hundred four oh six three percent of the rates of 

interest stores as Mexico and gram Brazil on market conditions 

2) This shall forbid it should be branded, if renown made it 

empty. 

3) “You are uniformly charming!” cried he, with a smile of 

associating and now and then I bowed and they perceived a 

chaise and four to wish for. 

Can you guess the author? These 3-gram sentences are sampled 
from an LM trained on who?

51
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• If task-specific, use a training corpus that has a similar genre to your task.

o If legal or medical, need lots of special-purpose documents

• Make sure to cover different kinds of dialects and speaker/authors.

o Example: African-American Vernacular English (AAVE)

• One of many varieties that can be used by African Americans and others

• Can include the auxiliary verb finna that marks immediate future tense:

• "My phone finna die"

Choosing training data

52

52
D e a k in  U n iv e r s it y  C R IC O S  P r o v id e r  C o d e :  0 0 1 1 3 B

• N-grams only work well for word prediction if the test corpus looks like the training 

corpus

o But even when we try to pick a good training corpus, the test set will surprise us!

o We need to train robust models that generalize!

• One kind of generalization: Zeros

oThings that don’t ever occur in the training set

oBut occur in the test set

The perils of overfitting

53
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• Training set:

… ate lunch

… ate dinner

… ate a

… ate the

P(“breakfast” | ate) = 0

Zeros

54

• Test set

… ate lunch

… ate breakfast

54
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• Bigrams with zero probability

o Will hurt our performance for texts where those words appear!

o And mean that we will assign 0 probability to the test set!

• And hence we cannot compute perplexity (can’t divide by 0)!

Zero probability bigrams

55

55
D e a k in  U n iv e r s it y  C R IC O S  P r o v id e r  C o d e :  0 0 1 1 3 B

Week 4.5 - Smoothing: Add-one 
(Laplace) smoothing

SIT330-770: Natural 
Language Processing

56
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• When we have sparse statistics:

• Steal probability mass to generalize better

The intuition of smoothing (from Dan Klein)

57

P(w | denied the)
  3 allegations
  2 reports
  1 claims
  1 request

  7 total

P(w | denied the)
  2.5 allegations
  1.5 reports
  0.5 claims
  0.5 request
  2 other

  7 total
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• Also called Laplace smoothing

• Pretend we saw each word one more time than we did

• Just add one to all the counts!

• MLE estimate:

• Add-1 estimate:

Add-one estimation

58

PMLE (wi |wi−1) =
c(wi−1,wi )
c(wi−1)

PAdd−1(wi |wi−1) =
c(wi−1,wi )+1
c(wi−1)+V
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• The maximum likelihood estimate

o of some parameter of a model M from a training set T

o maximizes the likelihood of the training set T given the model M

• Suppose the word “bagel” occurs 400 times in a corpus of a million words

• What is the probability that a random word from some other text will be “bagel”?

• MLE estimate is 400/1,000,000 = .0004

• This may be a bad estimate for some other corpus

o But it is the estimate that makes it most likely that “bagel” will occur 400 times in a million word corpus.

Maximum Likelihood Estimates

59
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Berkeley Restaurant Corpus: Laplace smoothed bigram 
counts

60
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Laplace-smoothed bigrams

61
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Reconstituted counts

62
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Compare with raw bigram counts

63
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• So add-1 isn’t used for N-grams: 

o We’ll see better methods

• But add-1 is used to smooth other NLP models

o For text classification 

o In domains where the number of zeros isn’t so huge.

Add-1 estimation is a blunt instrument

64

64

Week 4.6 - Interpolation, Backoff, and 
Web-Scale LMs

SIT330-770: Natural 
Language Processing

65
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• Sometimes it helps to use less context
o Condition on less context for contexts you haven’t learned much about 

• Backoff: 
o use trigram if you have good evidence,

o otherwise bigram, otherwise unigram

• Interpolation: 
o mix unigram, bigram, trigram

• Interpolation works better

Backoff and Interpolation

66
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• Simple interpolation

• Lambdas conditional on context:

Linear Interpolation

67

4.4 • SMOOTHING 15

The sharp change in counts and probabilities occurs because too much probabil-
ity mass is moved to all the zeros.

4.4.2 Add-k smoothing

One alternative to add-one smoothing is to move a bit less of the probability mass
from the seen to the unseen events. Instead of adding 1 to each count, we add a frac-
tional count k (.5? .05? .01?). This algorithm is therefore called add-k smoothing.add-k

P⇤
Add-k(wn|wn�1) =

C(wn�1wn)+ k
C(wn�1)+ kV

(4.23)

Add-k smoothing requires that we have a method for choosing k; this can be
done, for example, by optimizing on a devset. Although add-k is is useful for some
tasks (including text classification), it turns out that it still doesn’t work well for
language modeling, generating counts with poor variances and often inappropriate
discounts (Gale and Church, 1994).

4.4.3 Backoff and Interpolation

The discounting we have been discussing so far can help solve the problem of zero
frequency N-grams. But there is an additional source of knowledge we can draw
on. If we are trying to compute P(wn|wn�2wn�1) but we have no examples of a
particular trigram wn�2wn�1wn, we can instead estimate its probability by using
the bigram probability P(wn|wn�1). Similarly, if we don’t have counts to compute
P(wn|wn�1), we can look to the unigram P(wn).

In other words, sometimes using less context is a good thing, helping to general-
ize more for contexts that the model hasn’t learned much about. There are two ways
to use this N-gram “hierarchy”. In backoff, we use the trigram if the evidence isbackoff

sufficient, otherwise we use the bigram, otherwise the unigram. In other words, we
only “back off” to a lower-order N-gram if we have zero evidence for a higher-order
N-gram. By contrast, in interpolation, we always mix the probability estimatesinterpolation

from all the N-gram estimators, weighing and combining the trigram, bigram, and
unigram counts.

In simple linear interpolation, we combine different order N-grams by linearly
interpolating all the models. Thus, we estimate the trigram probability P(wn|wn�2wn�1)
by mixing together the unigram, bigram, and trigram probabilities, each weighted
by a l :

P̂(wn|wn�2wn�1) = l1P(wn|wn�2wn�1)

+l2P(wn|wn�1)

+l3P(wn) (4.24)

such that the l s sum to 1: X

i

li = 1 (4.25)

In a slightly more sophisticated version of linear interpolation, each l weight is
computed in a more sophisticated way, by conditioning on the context. This way,
if we have particularly accurate counts for a particular bigram, we assume that the
counts of the trigrams based on this bigram will be more trustworthy, so we can
make the l s for those trigrams higher and thus give that trigram more weight in
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• Use a held-out corpus

• Choose λs to maximize the probability of held-out data:

o Fix the N-gram probabilities (on the training data)

o Then search for λs that give largest probability to held-out set:

How to set the lambdas?

68

Training Data Held-Out 
Data

Test 
Data

logP(w1...wn |M (λ1...λk )) = logPM (λ1...λk ) (wi |wi−1)
i
∑
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• If we know all the words in advanced
o Vocabulary V is fixed

o Closed vocabulary task

• Often we don’t know this
o O ut O f Vocabulary  = OOV words

o Open vocabulary task

• Instead: create an unknown word token <UNK>
o Training of <UNK> probabilities

o Create a fixed lexicon L of size V

o At text normalization phase, any training word not in L changed to  <UNK>

o Now we train its probabilities like a normal word

o At decoding tim e

o If text input: Use UNK probabilities for any word not in training

Unknown words: Open versus closed vocabulary tasks

69
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• How to deal with, e.g., Google N-gram corpus

• Pruning
o Only store N-grams with count > threshold.

o Rem ove singletons of higher-order n-gram s

o Entropy-based pruning

• Efficiency
o Efficient data structures like tries

o Bloom filters: approximate language models

o Store words as indexes, not strings

o U se H uffm an coding to fit large num bers of w ords into tw o bytes

o Quantize probabilities (4-8 bits instead of 8-byte float)

Huge web-scale n-grams

70
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• “Stupid backoff” (Brants et al. 2007)

• No discounting, just use relative frequencies 

Smoothing for Web-scale N-grams

71

S(wi |wi−k+1
i−1 ) =

count(wi−k+1
i )

count(wi−k+1
i−1 )

  if  count(wi−k+1
i )> 0

0.4S(wi |wi−k+2
i−1 )      otherwise

"

#
$$

%
$
$

S(wi ) =
count(wi )

N
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• Add-1 smoothing:

o OK for text categorization, not for language modeling

• The most commonly used method:

o Extended Interpolated Kneser-Ney

• For very large N-grams like the Web:
o Stupid backoff

N-gram Smoothing Summary

72

72



3/27/24

13

D e a k in  U n iv e r s it y  C R IC O S  P r o v id e r  C o d e :  0 0 1 1 3 B

• Discriminative models:
o  choose n-gram weights to improve a task, not to fit the  training set

• Parsing-based models
• Caching Models
o Recently used words are more likely to appear

o These perform very poorly for speech recognition (why?)

Advanced Language Modeling

73

PCACHE (w | history) = λP(wi |wi−2wi−1)+ (1−λ)
c(w ∈ history)
| history |
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Week 4.7 - Kneser-Ney Smoothing

SIT330-770: Natural 
Language Processing
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• Suppose we wanted to subtract a little from a count of 4 to save 

probability mass for the zeros

• How much to subtract ?

• Church and Gale (1991)’s clever idea

• Divide up 22 million words of AP Newswire

o Training and held-out set

o for each bigram in the training set

o see the actual count in the held-out set!

• It sure looks like c* = (c - .75)

Absolute discounting: just subtract a little from each count

75

Bigram count in 
training

Bigram count in 
heldout set

0 .0000270

1 0.448

2 1.25

3 2.24

4 3.23

5 4.21

6 5.23

7 6.21

8 7.21

9 8.26

75

D e a k in  U n iv e r s it y  C R IC O S  P r o v id e r  C o d e :  0 0 1 1 3 B

• Save ourselves some time and just subtract 0.75 (or some d)!

• (Maybe keeping a couple extra values of d for counts 1 and 2)

• But should we really just use the regular unigram P(w)?

Absolute Discounting Interpolation

76

PAbsoluteDiscounting (wi |wi−1) =
c(wi−1,wi )− d

c(wi−1)
+λ(wi−1)P(w)

discounted bigram

unigram

Interpolation weight
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• Better estimate for probabilities of lower-order unigrams!

o Shannon game:  I can’t see without my reading___________?

o “Kong” turns out to be more common than “glasses”
o … but “Kong” always follows “Hong”

• The unigram is useful exactly when we haven’t seen this bigram!

• Instead of  P(w): “How likely is w”

• Pcontinuation(w):  “How likely is w to appear as a novel continuation?

o For each word, count the number of bigram types it completes

o Every bigram type was a novel continuation the first time it was seen

Kneser-Ney Smoothing I

77

Kongglasses

PCONTINUATION (w)∝  {wi−1 : c(wi−1,w)> 0}

77
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• How many times does w appear as a novel continuation:

• Normalized by the total number of word bigram types

Kneser-Ney Smoothing II

78

PCONTINUATION (w) =
{wi−1 : c(wi−1,w)> 0}

{(wj−1,wj ) : c(wj−1,wj )> 0}

PCONTINUATION (w)∝  {wi−1 : c(wi−1,w)> 0}

{(wj−1,wj ) : c(wj−1,wj )> 0}

78
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• Alternative metaphor: The number of  # of word types seen to precede w

• Normalized by the # of words preceding all words:

• A frequent word (Kong) occurring in only one context (Hong) will have a low continuation probability

Kneser-Ney Smoothing III

79

PCONTINUATION (w) =
{wi−1 : c(wi−1,w)> 0}
{w 'i−1 : c(w 'i−1,w ')> 0}

w '
∑

| {wi−1 : c(wi−1,w)> 0} |
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Kneser-Ney Smoothing IV

80

PKN (wi |wi−1) =
max(c(wi−1,wi )− d, 0)

c(wi−1)
+λ(wi−1)PCONTINUATION (wi )

λ(wi−1) =
d

c(wi−1)
{w : c(wi−1,w)> 0}

λ is a normalizing constant; the probability mass we’ve discounted

the normalized discount
The number of word types that can follow wi-1 
= # of word types we discounted
= # of times we applied normalized discount
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Kneser-Ney Smoothing: Recursive formulation

81

PKN (wi |wi−n+1
i−1 ) = max(cKN (wi−n+1

i )− d, 0)
cKN (wi−n+1

i−1 )
+λ(wi−n+1

i−1 )PKN (wi |wi−n+2
i−1 )

cKN (•) =
count(•)   for the highest order

continuationcount(•)    for lower order

!
"
#

$#

Continuation count = Number of unique single word contexts for �
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Week 4.8 – The Spelling Correction Task

SIT330-770: Natural 
Language Processing
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Applications for spelling correction

83

PhonesWord processing

83
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• Spelling Error Detection

• Spelling Error Correction:

o Autocorrect   

ohteàthe

o Suggest a correction

o Suggestion lists

Spelling Tasks

84
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• Non-word Errors
o graffe àgiraffe

• Real-word Errors
o Typographical errors

o three  à there

o Cognitive Errors (homophones)

o pieceà peace, 

o too  à  tw o

o your à you’re

• Non-word correction was historically mainly context insensitive

• Real-word correction almost needs to be context sensitive

Types of spelling errors

85
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• Depending on the application, ~1–20% error rates
o 26%: Web queries  Wang et al. 2003 

o 13%: Retyping, no backspace: Whitelaw et al. English&German

o 7%: Words corrected retyping on phone-sized organizer

o 2%: Words uncorrected on organizer Soukoreff &MacKenzie 2003

o 1-2%: Retyping: Kane and Wobbrock 2007, Gruden et al. 1983

Rates of spelling errors

86
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• Non-word spelling error detection:

o Any word not in a dictionary is an error

o The larger the dictionary the better … up to a point

o (The Web is full of mis-spellings, so the Web isn’t necessarily a great dictionary …)

• Non-word spelling error correction:

o Generate candidates: real words that are similar to error

o Choose the one which is best:
o Shortest weighted edit distance

o Highest noisy channel probability

Non-word spelling errors

87
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• For each word w, generate candidate set:

o Find candidate words with similar pronunciations

o Find candidate words with similar spellings

o Include w in candidate set

• Choose best candidate

o Noisy Channel view of spell errors

o Context-sensitive – so have to consider whether the surrounding words “make sense”

o Flying form Heathrow to LAX à Flying from Heathrow to LAX

Real word & non-word spelling errors

88
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Week 4.9 – The Noisy Channel Model of 
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Noisy Channel Intuition
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• We see an observation x of a misspelled word

• Find the correct word ŵ 

Noisy Channel

91

ŵ = argmax
w∈V

P(w | x)

= argmax
w∈V

P(x |w)P(w)
P(x)

= argmax
w∈V

P(x |w)P(w)
Prior probability or
Language Model

The likelihood or 
channel model
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acress

92

Non-word spelling error exampleNon-word spelling error example
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• Words with similar spelling

o Small edit distance to error

• Words with similar pronunciation

o Small distance of pronunciation to error

Candidate generation

93
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• Minimal edit distance between two strings, where edits are:

o Insertion

o Deletion

o Substitution

o Transposition of two adjacent letters

Candidate Testing:
Damerau-Levenshtein edit distance

94

94
D e a k in  U n iv e r s it y  C R IC O S  P r o v id e r  C o d e :  0 0 1 1 3 B

Words within 1 of acress

95

Error Candidate 
Correction

Correct 
Letter

Error Letter Type

acress actress t - deletion

acress cress - a insertion

acress caress ca ac transposition

acress access c r substitution

acress across o e substitution

acress acres - s insertion

acress acres - s insertion

95

D e a k in  U n iv e r s it y  C R IC O S  P r o v id e r  C o d e :  0 0 1 1 3 B

• 80% of errors are within edit distance 1

• Almost all errors within edit distance 2

• Also allow insertion of space or hyphen

o thisidea à  this idea

o inlaw à in-law

• Can also allow merging words

o data base à  database
o For short texts like a query, can just regard whole string as one item from which to produce 

edits

Candidate generation

96
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• Use any of the language modeling algorithms we’ve learned

• Unigram, bigram, trigram 

• Web-scale spelling correction

o Stupid backoff

Language Model

97
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• Counts from 404,253,213 words in Corpus of Contemporary English (COCA)

Unigram Prior probability

98

word Frequency of word P(w)

actress 9,321 .0000230573

cress 220 .0000005442

caress 686 .0000016969

access 37,038 .0000916207

across 120,844 .0002989314

acres 12,874 .0000318463

98

D e a k in  U n iv e r s it y  C R IC O S  P r o v id e r  C o d e :  0 0 1 1 3 B

• Error model probability, Edit probability

• Kernighan, Church, Gale  1990

• Misspelled word x = x1, x2, x3… xm

• Correct word w = w1, w2, w3,…, wn

• P(x|w) = probability of the edit 

o (deletion/insertion/substitution/transposition)

Channel model probability

99
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del[x,y]:    count(xy typed as x)

ins[x,y]:    count(x typed as xy)

sub[x,y]:    count(y typed as x)

trans[x,y]:  count(xy typed as yx)

Insertion and deletion conditioned on previous character

Computing error probability: confusion “matrix”

100
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Confusion matrix for substitution

101
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• Peter Norvig’s list of errors

• Peter Norvig’s list of counts of single-edit errors

oAll Peter Norvig’s ngrams data links: http://norvig.com/ngrams/ 

Generating the confusion matrix

102

102
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Channel model 

103

P (x|w) =

8
>>>>>>>><

>>>>>>>>:

del[wi�1,wi]
count[wi�1wi]

, if deletion

ins[wi�1,xi]
count[wi�1]

, if insertion

sub[xi,wi]
count[wi]

, if substitution
trans[wi,wi+1]
count[wiwi+1]

, if transposition
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Noisy channel probability for acress
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Candidate 
Correction

Correct 
Letter

Error 
Letter

x|w P(x|w) P(w) 109 *

P(x|w)*
P(w)

actress t - c|ct .000117 .0000231 2.7

cress - a a|# .00000144 .000000544 .00078

caress ca ac ac|ca .00000164 .00000170 .0028

access c r r|c .000000209 .0000916 .019

across o e e|o .0000093 .000299 2.8

acres - s es|e .0000321 .0000318 1.0

acres - s ss|s .0000342 .0000318 1.0
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Noisy channel probability for acress

105

Candidate 
Correction

Correct 
Letter

Error 
Letter

x|w P(x|w) P(w) 109 *

P(x|w)*
P(w)

actress t - c|ct .000117 .0000231 2.7

cress - a a|# .00000144 .000000544 .00078

caress ca ac ac|ca .00000164 .00000170 .0028

access c r r|c .000000209 .0000916 .019

across o e e|o .0000093 .000299 2.8

acres - s es|e .0000321 .0000318 1.0

acres - s ss|s .0000342 .0000318 1.0
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Noisy channel probability for acress
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Candidate 
Correction

Correct 
Letter

Error 
Letter

x|w P(x|w) P(w) 109 *

P(x|w)*
P(w)

actress t - c|ct .000117 .0000231 2.7

cress - a a|# .00000144 .000000544 .00078

caress ca ac ac|ca .00000164 .00000170 .0028

access c r r|c .000000209 .0000916 .019

across o e e|o .0000093 .000299 2.8

acres - s es|e .0000321 .0000318 1.0

acres - s ss|s .0000342 .0000318 1.0
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• “a stellar and versatile acress whose combination of sass and glamour…”

• Counts from the Corpus of Contemporary American English with add-1 smoothing 

• P(actress|versatile)=.000021 P(whose|actress) = .0010

• P(across|versatile) =.000021 P(whose|across) = .000006

• P(“versatile actress whose”) = .000021*.0010 = 210 x10-10

• P(“versatile across whose”) = .000021*.000006 = 1 x10-10

Using a bigram language model

107
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• “a stellar and versatile acress whose combination of sass and glamour…”

• Counts from the Corpus of Contemporary American English with add-1 smoothing 

• P(actress|versatile)=.000021 P(whose|actress) = .0010

• P(across|versatile) =.000021 P(whose|across) = .000006

• P(“versatile actress whose”) = .000021*.0010 = 210 x10-10

• P(“versatile across whose”) = .000021*.000006 = 1 x10-10

Using a bigram language model

108

108



3/27/24

19

D e a k in  U n iv e r s it y  C R IC O S  P r o v id e r  C o d e :  0 0 1 1 3 B

• Some spelling error test sets

o Wikipedia’s list of common English misspelling

o Aspell filtered version of that list

o Birkbeck spelling error corpus

o Peter Norvig’s list of errors (includes Wikipedia and Birkbeck, for training or testing)

Evaluation

109
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Week 4.10 – Real-word spelling errors
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• …leaving in about fifteen minuets to go to her 
house.

• The design an construction of the system…
• Can they lave him my messages?

• The study was conducted mainly be John Black.

• 25-40% of spelling errors are real words     Kukich 1992

Real-word spelling errors

111
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• For each word in sentence (phrase, query …)

o Generate candidate set

o the word itself 

oall single-letter edits that are English words

owords that are homophones

o (all of this can be pre-computed!)

• Choose best candidates

oNoisy channel model

Solving real-world spelling errors

112
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• Given a sentence w1,w2,w3,…,wn

• Generate a set of candidates for each word wi

o Candidate(w1) = {w1, w’1 , w’’1 , w’’’1 ,…}

o Candidate(w2) = {w2, w’2 , w’’2 , w’’’2 ,…}

o Candidate(wn) = {wn, w’n , w’’n , w’’’n ,…}

• Choose the sequence W that maximizes P(W)

Noisy channel for real-word spell correction

113
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Noisy channel for real-word spell correction

114

two of thew

to threw

on

thawofftao

thetoo

oftwo thaw

...

114

http://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings/For_machines
http://aspell.net/test/
http://www.ota.ox.ac.uk/headers/0643.xml
http://norvig.com/ngrams/spell-errors.txt
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Noisy channel for real-word spell correction

115

two of thew

to threw

on

thawofftao

thetoo

oftwo thaw

...
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• Out of all possible sentences with one word replaced
o w1, w’’2,w3,w4 two off thew     

o w1,w2,w’3,w4             two of the

o w’’’1,w2,w3,w4          too of thew 

o …

• Choose the sequence W that maximizes P(W)

Simplification: One error per sentence

116

116

D e a k in  U n iv e r s it y  C R IC O S  P r o v id e r  C o d e :  0 0 1 1 3 B

• Language model

o Unigram

o Bigram

o etc.

• Channel model

o Same as for  non-word spelling correction

o Plus need probability for no error, P(w|w)

Where to get the probabilities

117
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• What is the channel probability for a correctly typed word?

• P(“the”|“the”)

o If you have a big corpus, you can estimate this percent correct

• But this value depends strongly on the application

o .90 (1 error in 10 words)

o .95 (1 error in 20 words)

o .99 (1 error in 100 words)

Probability of no error

118
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Peter Norvig’s “thew” example

119

x w x|w P(x|w) P(w) 109 P(x|w)P(w)
thew the ew|e 0.000007 0.02 144

thew thew 0.95 0.00000009 90

thew thaw e|a 0.001 0.0000007 0.7

thew threw h|hr 0.000008 0.000004 0.03

thew thwe ew|we 0.000003 0.00000004 0.0001
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Week 4.11 – State of the art noisy 
systems

SIT330-770: Natural 
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• If very confident in correction 
o Autocorrect 

• Less confident 
o Give the best correction  

• Less confident 
o Give a correction list 

• Unconfident 

o Just flag as an error 

HCI issues in spelling

121
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• We never just multiply the prior and the error model 

• Independence assumptions à probabilities not commensurate 

• Instead: Weigh them 

• Learn λ from a development test set 

State of the art noisy channel

122

ŵ = argmax
w∈V

P(x |w)P(w)λ
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• Metaphone, used in GNU aspell  

o Convert misspelling to metaphone pronunciation 
o “Drop duplicate adjacent letters, except for C.” 

o “If the word begins with 'KN', 'GN', 'PN', 'AE', 'WR', drop the first letter.” 

o “Drop 'B' if aver 'M' and if it is at the end of the word” 

o …

• Find words whose pronunciation is 1-2 edit distance from misspelling’s 

• Score result list  

o Weighted edit distance of candidate to misspelling 
o Edit distance of candidate pronunciation to misspelling pronunciation

Phonetic error model

123
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• Allow richer edits  (Brill and Moore 2000)
o entàant

o phàf

o leàal

• Incorporate pronunciation into channel (Toutanova and Moore 2002)

• Incorporate device into channel
o Not all Android phones need have the same error model

o But spell correction may be done at the system level

Improvements to channel model

124
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• Factors that could influence p(misspelling|word) 

o The source letter 

o The target letter 

o Surrounding letters 

o The position in the word 

o Nearby keys on the keyboard 

o Homology on the keyboard 

o Pronunciations 

o Likely morpheme transformations 

Channel model

125
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Nearby keys
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• Instead of just channel model and language model 

• Use many features in a classifier (next lecture). 

• Build a classifier for a specific pair like: 

      whether/weather 

o “cloudy” within +- 10 words 

o ___ to VERB 

o ___ or not

Classifier-based methods for real-word spelling correction
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