SIT330-770: Natural Language
Processing

Week 4 - N-gram Language Models

Dr. Mohamed Reda Bouadjenek

School of Information Technology, Faculty of
Sci Eng & Built Env

UNIVERSITY

redabovadienck@deakinedugy

Probabilistic Language Modeling

Goal: compute the probability of a sentence or sequence of words:

P(W) = P(W1,W2,W3,Wa,Ws...Wn)
Related task: probability of an upcoming word:
P(ws | w1,w2,W3,Wa)
A model that computes either of these:
P(W) or P(wn|wi,Wz..Wn1) is called a language model.

Better: the grammar But language model or LM is standard

SIT330-770: Natural
Language Processing

Week 4.1 - Introduction to N-grams La nguage
.
Models in
Dr. Mohamed Reda Bouadjenek

School of Information Technology, é N L F

Faculty of Sci Eng & Built Env

create

]
DEAKIN

What is a Language Model?

* Amodel to assign a probability to a sentence
© Machine Translation:
© P(high winds tonight) > P(large winds tonight)
o Spell Correction

© The office is about fifteen minuets from my house!

* Plabout P(about
© Speech Recognition
© P(Isaw a van) >> P(eyes awe of an)

© +Summarization, question, answering, etc., etc.!!

How to compute P(W)

* How to compute this joint probability:

o P(its, water, is, so, transparent, that)

* Intuition: let’s rely on the Chain Rule of Probability

Reminder: The Chain Rule

* Recall the definition of conditional probabilities

p(B|A)=P(AB)/P(A) Rewriting: P(A,B)=P(A)P(B|A)
* More variables:

P(A,B,C,D) = P(A)P(B| A)P(C|A,B)P(D|A,B,C)
+ The Chain Rule in General

P(X1,X2,X3,...,Xn) = P(x1)P(x2|X1)P(X3| X1,X2)...P(Xn| X4,...,Xn-1)

3/27/24

mailto:reda.bouadjenek@deakin.edu.au

The Chain Rule applied to compute joint probability of words in
sentence

P(ww,...w,) =HP(Wi Iww,...w.)

P(“its water is so transparent”) =
P(its) x P(water|its) x P(is|its water)

x P(so|its water is) x P(transparent|its water is so)

DERKIN

Markov Assumption

P(ww

W)= HP(w, W, ooy
i
* In other words, we approximate each component in the product

Pw, lww,..w,_)=Pw,lw_,..w,_)

How to estimate these probabilities

* Could we just count and divide?

P(the lits water is so transparent that) =

Count(its water is so transparent that the)

Count(its water is so transparent that)

* No! Too many possible sentences!

+ We'll never see enough data for estimating these

Markov Assumption

&)

* Simplifying assumption:

Andrel Markov

P(the lits water is so transparent that) =~ P(the | that)

* Or maybe

P(the |its water is so transparent that) ~ P(the | transparent that)

Simplest case: Unigram model

POwpw,..w,) =] [POw)
i
* Some automatically generated sentences from a unigram model

fifth, an, of, futures, the, an, incorporated, a,
inflation, most, dollars, quarter, in, is, mass
thrift, did, eighty, said, hard, 'm, july, bullish

that, or, limited, the

ar

)

the,

Bigram model @

« Condition on the previous word:
Pw, lww,...w,_)=P(w, lw_)

texaco, rose, one, in, this, issue, is, pursuing, growth, in, a,
boiler, house, said, mr., gurria, mexico, 's, motion, control,
proposal, without, permission, from, five, hundred, fifty, five, yen
outside, new, car, parking, lot, of, the, agreement, reached

this, would, be, a, record, november

11

12

3/27/24

N-gram models

We can extend to trigrams, 4-grams, 5-grams
In general this is an insufficient model of language

o because language has long-distance dependencies:
“The computer which | had just put into the machine room on the fifth floor crashed.”

But we can often get away with N-gram models

13

An example
P(w, 1w,,) = c(w,w) <s>|am Sam </s>
i) <s>Sam | am </s>
<s> | do not like green eggs and ham </s>
P(I]|<s>) =3 P(am|I)
P(</s>|sam) = P(do|I) =3

16

SIT330-770: Natural
Language Processing
Week 4.2 - Estimating N-gram

Probabilities

Language
Models in

NLP

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env.

create

]
DEAKIN

Estimating bigram probabilities

* The Maximum Likelihood Estimate

P(w;lw,_)=

P(w;lw,_)

count(w,_,,w,)

count(w,_,)

_ c(wiy,w)

c(w,y)

14

More examples:
Berkeley Restaurant Project sentences

« can you tell me about any good cantonese restaurants close by
+ mid priced thai food is what i’'m looking for
« tell me about chez panisse

* can you give me a listing of the kinds of food that are available

i’'m looking for a good place to eat breakfast

when is caffe venezia open during the day

15

Raw bigram counts

* Out of 9,222 sentences

i want | to eat chinese | food | lunch | spend
i 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 | 2 0 6 211
cat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 150 15 0 1 4 0 0
Tunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

17

18

3/27/24

Raw bigram probabilities

* Normalize by unigrams:

i want_| o | eat | chinese | food | lunch | spend |
2533 | 927 2417 | 746 | 158 [0 34 [28
* Result:
i want | to cat chinese | food | Tunch [spend
i 0002 03310 0.0036 0 0 0 0.00079
want | 00022 [0 |0.66 00011 00065 |0.0065 0005400011
to 0000830 |0.0017|0.28 0.00083 [0 0.0025 | 0.087
eat 0 0 |00027|0 0021 | 0.0027[0.056 |0
chinese| 0.0063 [0 |0 0 0 0.520.0063 [0
food | 0014 [0 |0014 |0 0.00092 | 0.0037 | 0 0
lunch | 00059 [0 |0 0 0 0.0029 [0 0
» spend | 0.0036 | 0 [0.0036 |0 0 0 0 0

Bigram estimates of sentence probabilities

P(<s> | want english food </s>) =
P(l|<s>)
x P(want]l)
x P(english|want)
x P(food |english)
x P(</s>|food)
= .000031

What kinds of knowledge?

* P(english|want) =.0011
* P(chinese|want) = .0065
* P(to|want) = .66

* P(eat | to) =.28

* P(food | to) =0

* P(want | spend) =0
*P(i]|<s>)=.25

19

Practical Issues

* We do everything in log space
oAvoid underflow

o(also adding is faster than multiplying)

log(py x p, x p3 x py) =log p; +log p, +log p; +log p,

20

Language Modeling Toolkits

* SRILM
ohttp://www.speech.sri.com/projects/srilm/

* KenLM
ohttps://kheafield.com/code/kenlm/

21

Google N-Gram Release, August 2006

All Our N-gram are Belong to You
Posted by Alex Franz and Thorsten Brants, Google Machine Transiation Toam

Here at Google Research we have been using word n-gram models for & variety of R&D projects,

That's why we decided to share this enormous cataset with sveryona. We processed 1,024,908,267,229 words
of runring text and are publishing the counts for all 1,176,470,663 fve-word sequsnces that appear at least 40
times. There ere 13,588,321 nicue wors, afer cscarding Words thet appear less than 200 times.

22

23

24

3/27/24

http://www.speech.sri.com/projects/srilm/
https://kheafield.com/code/kenlm/

Google N-Gram Release

* serve as the incoming 92
serve as the incubator 99
serve as the independent 794

¢ serve as the index 223

serve as the indication 72
serve as the indicator 120
serve as the indicators 45

* serve as the indispensable 111
serve as the indispensible 40
serve as the individual 234

prees bl L Ll

Google Book N-grams

* https://books.google.com/ngrams/

25

How to evaluate N-gram models

* "Extrinsic (in-vivo) Evaluation"
To compare models A and B
1. Puteach model in a real task
* Machine Translation, speech recognition, etc.
2. Runthetask, get ascore for Aand for B
* How many words translated correctly
* How many words transcribed correctly

3. Compare accuracy forAand B

28

26

Intrinsic (in-vitro) evaluation

« Extrinsic evaluation not always possible

+ Expensive, time-consuming
+ Doesn't always generalize to other applications
* Intrinsic evaluation: perplexity
+ Directly measures language model performance at predicting words.
+ Doesn't necessarily correspond with real application performance
+ But gives us a single general metric for language models

+ Useful for large language models (LLMs) as well as n-grams

SIT330-770: Natural
Language Processing

Week 4.3 - Evaluation and Perplexity

Language
Models in

NLP

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

create

]
DEAKIN

Training sets and test sets

* We train parameters of our model on a training set.
* We test the model’s performance on data we haven’t seen.

© Atest set is an unseen dataset; different from training set.
© Intuition: we want to measure generalization to unseen data

© An evaluation metric (like perplexity) tells us how well our model does on the test set.

29

30

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

Choosing training and test sets

* If we're building an LM for a specific task

* The test set should reflect the task language we want to use the model for
* If we're building a general-purpose model

« We'll need lots of different kinds of training data

* We don't want the training set or the test set to be just from one domain

or author or language.

Training on the test set

We can't allow test sentences into the training set
 Orelse the LM will assign that sentence an artificially high probability when we see it in
the test set
+ And hence assign the whole test set a falsely high probability.
* Making the LM look better than it really is
This is called “Training on the test set”

Bad science!

31

Intuition of perplexity as evaluation metric: How good is our
language model?

* Intuition: A good LM prefers "real" sentences
oAssign higher probability to “real” or “frequently observed”
sentences
oAssigns lower probability to “word salad” or “rarely observed”

sentences?

«If we test on the test set many times we might implicitly tune to its
characteristics
* Noticing which changes make the model better.
*So we run on the test set only once, or a few times
* That means we need a third dataset:
+ A development test set or, devset.
* We test our LM on the devset until the very end

* And then test our LM on the test set once

34

32

Intuition of perplexity 2: Predicting upcoming words

The Shannon Game: How well can we predict the next

word? time 0.9

dream 0.03
* Once upona
\ o midnight 0.02
Claude Shannon + Thatisapictureofa ____
* For breakfast | ate my usual and 1e-100

Unigrams are terrible at this game (Why?)
A good LM is one that assigns a higher probability to the

next word that actually occurs

33

Intuition of perplexity 3: The best language model is one that
best predicts the entire unseen test set

* We said: a good LM is one that assigns a higher probability to the next word
that actually occurs.
* Let's generalize to all the words!
* The best LM assigns high probability to the entire test set.
* When comparing two LMs, A and B
* We compute Pa(test set) and Ps(test set)
* The better LM will give a higher probability to (=be less surprised by) the test set than
the other LM.

35

36

3/27/24

of perplexity 4: Use perplexity instead of raw
ity

* Probability depends on size of test set
* Probability gets smaller the longer the text
+ Better: a metric that is per-word, normalized by length
< Perplexity is the inverse probability of the test set, normalized by the
number of words |
PP(W) = P(ww,..wy) ¥

-
. P(wywy...wy)

37

Intuition of perplexity 7:

Weighted average branching factor

Perplexity s also the weighted average branching factor of a language.

Branching factor: number of possible next words that can follow any word

Example: Deterministic language L = {red,blue, green}
3 ng bl

Now assume LM A where each word follows any other word with equal probability %

Given atest set T = "red red red red blue”
o Perplexitya(T) = Plred red red red blue) = ((4F) ¥+ =(4)* =3

But now suppose red was very likely in training set, such that for LM B:

© Plred)=8 plereen) =1 plblue)=.1

We would expect the probability to be higher, and hence the perplexity to be smaller:

& Perpleitys(T) = Palred red red red blue) ¥*

Intuition of perplexity 5: the inverse

Perplexity is the inverse probability of the test set, normalized by the number of words

a
PPOW) = P(wwy.wy) ¥

({4 N

(The inverse comes from the original definition of perplexity from cross-entropy rate in
information theory)
Probability range is [0,1], perplexity range is [1,5°]

imizi ity is the same as

Intuition of perplexity 6: N-grams

'
PPW) = P(wpwy.wy) ¥

—
Plrtyiy)

Chain rule: PP(W) =

v
‘ 1

Bigrams: PP(W) = ¥ Hm
i=1 B

38

Holding test set constant:
Lower perplexity = better language model

* Training 38 million words, test 1.5 million words, WSJ
m-

Perplexity 962 170 109

40

41

39

SIT330-770: Natural
Language Processing

Week 4.4 - Sampling and Generalization

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

create

Language
Models in

NLP

EAKI

42

3/27/24

The Shannon (1948) Visualization Method
Sample words from an LI

[}
DEAKIN

* Unigram:
REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN DIFFERENT
NATURAL HERE HE THE A IN CAME THE TO OF TO EXPERT GRAY COME TO
FURNISHES THE LINE MESSAGE HAD BE THESE.

* Bigram:

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE
CHARACTER OF THIS POINT IS THEREFORE ANOTHER METHOD FOR THE LETTERS
THAT THE TIME OF WHO EVER TOLD THE PROBLEM FOR AN UNEXPECTED.

43

Visualizing Bigrams the Shannon Way

Choose a random bigram (<s>, w)

<s> I
I want
according to its probability plw|<s>) ant to
to eat
eat Chinese
Chinese food
food </s>
I want to eat Chinese food

Now choose a random bigram ~(w,)
according to its probability p(x|w)

And s on until we choose </s>

Then string the words together

46

How Shannon sampled those words in 1948

"Open a book at random and select a letter at random on the page. This letter is
recorded. The book is then opened to another page and one reads until this letter is
encountered. The succeeding letter is then recorded. Turning to another page this

second letter is searched for and the succeeding letter recorded, etc."

Sampling a word from a distribution

polyphonic
however P=000%018
the of a toin (p=0003) E
[cos Toos Jocz[oceo] e
} | I | e | ..
.06 .09 .11.13.15 .66 .99
0 1

44

Note: there are other sampling methods

* Used for neural language models

* Many of them avoid generating words from the very unlikely tail of the
distribution
* We'll discuss when we get to neural LM decoding:

o Temperature sampling
© Top-k sampling
o Top-p sampling

45

Approximating Shakespeare

gram

gram

gram

gram

—To him swallowed confess hear both. Which. OF save on trail for are ay device and
rote life have

—Hill he late speaks; or! a more to leg less first you enter

~Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live
king. Follow.

~What means, sir. I confess she? then all sorts, he is trim, captain.

~Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,
“tis done.

—This shall forbid it should be branded, if renown made it empty.

—King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
great banquet serv’d in;

~It cannot be but so.

47

48

3/27/24

Shakespeare as corpus ‘
DERKIN

N=884,647 tokens, V=29,066

Shakespeare produced 300,000 bigram types out of V?= 844 million possible
bigrams.

© 50 99.96% of the possible bigrams were never seen (have zero entries in the table)

© That sparsity is even worse for 4-grams, explaining why our sampling generated actual

Shakespeare.

49

« If task-specific, use a training corpus that has a similar genre to your task.

o If legal or medical, need lots of special-purpose documents
* Make sure to cover different kinds of dialects and speaker/authors.
o Example: African-American Vernacular English (AAVE)
* One of many varieties that can be used by African Americans and others
* Caninclude the auxiliary verb finna that marks immediate future tense:

* "My phone finna die"

52

The Wall Street Journal is not Shakespeare

1 Months the my and issue of year foreign new exchange’s september

were recession exchange new endorsed a acquire to six executives
gram

Last December through the way to preserve the Hudson corporation N.

B. E. C. Taylor would seem to complete the major central planners one
gram point five percent of U. S. E. has already old M. X. corporation of living

on information such as more frequently fishing to keep her

They also point to ninety nine point six billion dollars from two hundred

four oh six three percent of the rates of interest stores as Mexico and
gram Brazil on market diti

Can you guess the author? These 3-gram sentences are sampled
from an LM trained on who?

1) They also point to ninety nine point six billion dollars
from two hundred four oh six three percent of the rates of
interest stores as Mexico and gram Brazil on market conditions
2) This shall forbid it should be branded, if renown made it
empty.

3) “You are uniformly charming!” cried he, with a smile of
associating and now and then I bowed and they perceived a
chaise and four to wish for.

50

The perils of overfitting

* N-grams only work well for word prediction if the test corpus looks like the training
corpus
© But even when we try to pick a good training corpus, the test set will surprise us!
© We need to train robust models that generalize!

« One kind of generalization: Zeros

oThings that don’t ever occur in the training set

oBut occur in the test set

51

&)

* Training set: * Test set
... ate lunch ... atelunch
- ate dinner ... ate breakfast
..atea
... ate the

P(“breakfast” | ate) =0

53

54

3/27/24

Zero probability bigrams

* Bigrams with zero probability
o Will hurt our performance for texts where those words appear!

© And mean that we will assign o probability to the test set!

* And hence we cannot compute perplexity (can‘t divide by o)!

DERKIN

55

Add-one estimation

* Also called Laplace smoothing

* Pretend we saw each word one more time than we did

* Just add one to all the counts!

+ MLE estimate: Py v, 1y)= S)
c(w,y)
o w)+1
* Add-1 estimate: P (W, |W(»_.)=M
cw_)+V

58

SIT330-770: Natural
Language Processing
Week 4.5 - Smoothing: Add-one

(Laplace) smoothing

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env.

create

Language
Models in

NLP

]
DEAKIN

* When we have sparse statistics:

P(w | denied the)
3 allegations

2 reports

1 claims

1 request

7 total

P(w | denied the)
2.5 allegations
15 reports
0.5 claims
0.5 request
2other
7 total

The intuition of smoothing (from Dan Kilein)

* Steal probability mass to generalize better

allegations.

attack

outcome

Maximum Likelihood Estimates

* The maximum likelihood estimate

o of some parameter of a model M from a training set T

© maximizes the likelihood of the training set T given the model M

* MLE estimate is 400/1,000,000 = .0004

* This may be a bad estimate for some other corpus

+ Suppose the word “bagel” occurs 400 times in a corpus of a million words

* What is the probability that a random word from some other text will be “bagel”?

o But tis the estimate that makes it most likely that “bagel” will occur 400 times in a million word corpus.

57

Berkeley Restaurant Corpus:
counts

Laplace smoothed bigram

i [want | to [ca | chinese | food | funch | spend
i 6 | 88 | I 0 1 1 1 3
want 3 1 609 2 7 7 6 2

o 3 1 5 687 3 1 7 212
cat 1] 3 1 17 3 43 1
chinese | 2 | 1 1 1 1 83 | 2 1
food 16 1 16 1 2 5 1 1
lmch | 3 | 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1

59

60

3/27/24

10

Laplace-smoothed bigrams

P (walwy_1) =

i want to cat

i 0.0015 0.21 0.0025
want 0.0013 0.00042 0.00084
to 0.00078 | 0.00026 0.18
eat 0.00046 | 0.00046 0.00046
chinese | 0.0012 0.00062 0.00062
food 0.0063 | 0.00039 0.00039
lunch 0.0017 0.00056 0.00056
spend 0.0012 0.00058 0.00058

Cwpywa) +1
C(wy1)+V

[}
DEAKIN

chinese | food lunch spend

0.00025[0.00025 0.00025] 0.00075
0.0029 0.0029 0.0025 0.00084
0.00078 | 0.00026 0.0018 0.055

00078 | 0.0014 002 0.00046
0.00062| 0.052 0.0012 0.00062
0.00079| 0.002 0.00039| 000039
0.00056| 0.0011 0.00056| 0.00056
0.00058| 0.00058 0.00058 | 0.00058

61

Add-1 estimation is a blunt instrument

* So add-1isn’t used for N-grams:

© We'll see better methods
* Butadd-1is used to smooth other NLP models

o For text classification

o In domains where the number of zeros isn’t so huge.

Reconstituted counts

—1)+V

i want to eat chinese | food | Tlunch| spend
i 3.8 527 0.64 6.4 0.64 0.64] 0.64 1.9
want 12 0.39 238 0.78 27 2.7 23 0.78
to 19 0.63 31 430 19 0.63] 4.4 133
cat 034 034 | 1 034 | 58 1 15 0.34
chinese | 0.2 0.098| 0.098| 0.098| 0.098 .2 02 0.098
food 6.9 043 6.9 043 0.86 22 043 0.43
lunch 057 019 | 019 | 019 [019 038) 019 | 019
spend 032 0.16 0.32 0.16 0.16 0.16| 0.16 0.16

Compare with raw bigram counts

Spend

food

T want
i 5| s
want | 2 |0
0 2 0
et oo
chinese 1 0
food | 15| 0
mch | 2 | 0
spend | 1| 0

i [wam
38 527
want 12 0.39
19| 063
034] 034
02 | 0098
69 | 043
057|019
032| 016

0.64

64

62

SIT330-770: Natural
Language Processing

Week 4.6 - Interpolation, Backoff, and
Web-Scale LMs

Dr. Mohamed Reda Bouadjenek
School of Information Technology,

Faculty of Sci Eng & Built Env
create

Language
Models in

NLP

Backoff and Interpolation

Sometimes it helps to use less context

© Condition on less context for contexts you haven't learned much about

Backoff:

© use trigram if you have good evidence,

© otherwise bigram, otherwise unigram

Interpolation:

© mix unigram, bigram, trigram

Interpolation works better

65

66

3/27/24

11

Linear Interpolation

[}
DEAKIN

* Simple interpolation
Plwalwa-2wa-1) = AP(walwa-2wn-1) Zli=l
+AaP(WalWn1) i
+A3P(wn)

* Lambdas conditional on context:

POy 1) = M OWZ3)POwalwy 2w, 1)

2 n-2

F2 (Wi T5)P(wialwi-1)

n-2

(WP (w)

67

Huge web-scale n-grams

* How to deal with, e.g., Google N-gram corpus

* Pruning
& Only store N-grams with count > threshold.
© Remove singletons of higher-order n-grams
o Entropy-based pruning
« Efficiency
o Efficient data structures like tries
o Bloom filters: approximate language models
o Store words as indexes, not strings
© Use Huffman coding to fit large numbers of words into two bytes

o Quantize probabilities (4-8 bits instead of 8-byte float)

70

How to set the lambdas?

* Use a held-out corpus

Training Data Hel

Test
Data

* Choose As to maximize the probability of held-out data:

o Fix the N-gram probabilities (on the training data)
© Then search for As that give largest probability to held-out set:

102 POwy .o, | M (2)) = D108 Py, 00 10,

Unknown words: Open versus closed vocabulary tasks

* If we know all the words in advanced

Vocabulary V is fixed
Closed vocabulary task
+ Often we don’t know this
Out Of Vocabulary = 00V words
Open vocabulary task
* Instead: create an unknown word token <UNK>
Training of <UNK> probabilities
Create a fixed lexicon L of size V.
Attext normalization phase, any training word not in L changed to <UNK>
Now we train its probabilites like a normal word
At decoding time

Ftext input: Use UNK probabilites for any word not in training

68

Smoothing for Web-scale N-grams

« “Stupid backoff” (Brants et al. 2007)

* No discounting, just use relative frequencies

count(w; . 0
if count(w;,,)>0

S(w, Iwi,) =1 count(w;

0.4S(w,1w’},,) otherwise
_ count(w,)

S(w;) N

69

N-gram Smoothing Summary

* Add-1smoothing:

© OK for text categorization, not for language modeling
* The most commonly used method:

o Extended Interpolated Kneser-Ney
* For very large N-grams like the Web:

o Stupid backoff

71

72

3/27/24

12

3/27/24

Advanced Language Modeling ‘ Absolute discounting: just subtract a little from each count @
DEAKIN
SIT330-770: Natural
« Discriminative models: Language Processing Suppose we wanted to subtract aittle from a count of 4 to save |vamg | hedout e
o choose n-gram weights to improve a task, not to fit the training set Week 4.7 - Kneser-Ney Smoothing La n g u a g e probability mass for the zeros 0 10000270
. . ? T 0428
* Parsing-based models d I . How much to subtract ? . -
. IVI * Church and Gale (1991)’s clever idea ;
* Caching Models o e s In o i v(999 . 3 738
Dr. Mohamed Reda Bouadjenek * Divide up 22 million words of AP Newswire
i 7 33
© Recently used words are more likely to appear o Training and held-out set
. c(w € history) School of Information Technology, 5 421
Peyere (Wlhistory) = AP(w, lw,_,w,) +(1= }L)W Faculty of Sci Eng & Built Env o o for each bigram in the training set 3 523
G o seethe actual count in the held-out set! 7 621
- 5
© These perform very poorly for speech recognition (why?) v + It sure looks ke c* = (c - 75) 5 73T
DERIIN g EE

73 74 75

Kneser-Ney Smoothing | Kneser-Ney Smoothing Il

Absolute Discounting Interpolation @

+ Save ourselves some time and just subtract 0.75 (or some d)!

Better estimate for probabilities of lower-order unigrams! * How many times does w appear as a novel continuation:

© Shannon game: | can't see without my reading__Kmses 2

Preoxmmunmoy) & [{wiy :c(w,,w) > 0}

d\swum(ed bigram)—d Interpolation weight © “Kong” turns out to be more common than “glasses”
c(w,_,w,)— P P + Normalized by the total number of word bigram types
= i-1° ... but “Kong” always follows “Hon
Papsotuepiscouning (Wi 1 Wi_y) = ==+ A(w,)P(w) ° € v € {(w,w,):c()> 0}
i1 unigram * The unigram is useful exactly when we haven’t seen this bigram! ‘ Win:Wj) €W W5 ‘
* Instead of P(w): “How likely is w’ p (W)= ‘{WH se(w,,,w)> 0}‘
* (Maybe keeping a couple extra values of d for counts 1 and 2) * Pcontinuation(w): “How likely is w to appear as a novel continuation? CONTINUATION

‘{(w/,,,wj) re(wp,w))> O}‘
* But should we really just use the regular unigram P(w)? © For each word, count the number of bigram types it completes
© Every bigram type was a novel continuation the first time it was seen

.- ,, Peovmunnon)% [(w, ¢, 1.w) > 0} B

76 77 78

13

Kneser-Ney Smoothing Il

+ Normalized by the # of words preceding all words:

{w,:c
Feoxrmunmon W)= E“

+ Alternative metaphor: The number of # of word types seen to precede w

14w, :e(w,,w) >0} 1

(w1, w) > 03]
c(w'y,w)> 0}

+ Afrequent word (Kong) occurring in only one context (Hong) will have a low continuation probability

[}
DEAKIN

79

SIT330-770: Natural
Language Processing

Week 4.8 —The Spelling Correction Task

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

create

Language

Models in

NLP

DERKIN

Kneser-Ney Smoothing IV

)-d,0)

max(c(w,_;, W,
)

Py (w; 1w, + A0) Feonmuanion (W)

Ais a normalizing constant; the probability mass we've discounted

d
o [w: z(:u,,‘ w)> 0}

Awiy)=

The number of word types that can follow w1
the normalized discount =¥ of word types we discounted

= #of times we applied normalized discount

Kneser-Ney Smoothing: Recursive formulation

max(cy (Wiper) = d,0)

=
Cxn (WiZun)

il i1 i1
Piw O 190 + A0 Py (W 1w 500)

count(*) for the highest order
()= o
continuationcount(®) for lower order

Continuation count = Number of unique single word contexts for *

80

Applications for spelling correction

Word processing Phones

= B T S Neviesese | |
ol o | e —
[epe——r—r e il

e)
4w

T — G

Camni) Qs ED
- Q|WIE|R|T|Y|U|I|O|P
1as] oo |

ploogie natural langage processing

Showing results for natural language processing
Search nstead for natural langage processir

81

Spelling Tasks

* Spelling Error Detection

* Spelling Error Correction:
o Autocorrect
ohte>the
© Suggest a correction

© Suggestion lists

84

3/27/24

14

Types of spelling errors

[}
DEAKIN

* Non-word Errors
o graffe >giraffe
* Real:word Errors

o Typographical errors

© three > there
o Cognitive Errors (homophones)
© piece peace,

0 too> two

© your > you're

* Non-word correction was historically mainly context insensitive
* Real-word correction almost needs to be context sensitive

85

Real word & non-word spelling errors

* For each word w, generate candidate set:

o Find candidate words with similar pronunciations
o Find candidate words with similar spellings
o Include win candidate set
* Choose best candidate
o Noisy Channel view of spell errors
o Context-sensitive — so have to consider whether the surrounding words “make sense”

o Flying form Heathrow to LAX > Flying fom Heathrow to LAX

88

Rates of spelling errors

© 2-2%: Retyping: kene andwobbrock 007, Gruden et ol 2983

« Depending on the application, ~1-20% error rates

o 26%: Web queries Wang et al. 2003

o 13%: Retyping, no backspace: Whitelaw et al. English&German
o 7%: Words corrected retyping on phone-sized organizer

o 2%: Words uncorrected on organizer Soukoreff &MacKenzie 2003

Non-word spelling errors

* Non-word spelling error detection:

© Any word not in a dictionary is an error

© The larger the dictionary the better ... up to a point
* Non-word spelling error correction:
© Generate candidates: real words that are similar to error

© Choose the one which is best:
o Shortest weighted edit distance

© Highest noisy channel probability

© (The Web s full of mis-spellings, so the Web isn't necessarily a great dictionary ...)

86

SIT330-770: Natural
Language Processing
Week 4.9 —The Noisy Channel Model of

Spelling

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env.

create

Language
Models in

NLP

1]
L)

87

Noisy Channel Intuition

original word

guessed word

89

90

3/27/24

15

Noisy Channel

[}
DEAKIN

* We see an observation x of a misspelled word

* Find the correct word w
W =argmax P(w | x)
weV

— argmax P(xIw)P(w)
wev P(x)

=argmax P(x |lw)P(w) e
wEV Language Model

91

Candidate Testi
Damerau-Level

tein edit distance

* Minimal edit distance between two strings, where edits are:
o Insertion
o Deletion
o Substitution

o Transposition of two adjacent letters

Non-word spelling error example

acress

Candidate generation

* Words with similar spelling
o Small gdit distance to error
* Words with similar pronunciation

o Small distance of pronunciation to error

92

Words within 1 of acress

acress

acress

acress

acress

acress

acress

acress

94

Candidate
Correction

actress

cress

caress

access

across

acres

acres

Error Letter

deletion

insertion
transposition
substitution
substitution
insertion

insertion

93

Candidate generation

* 80% of errors are within edit distance 1

Almost all errors within edit distance 2

Also allow insertion of space or hyphen
o thisidea - this idea

o inlaw 2 in-law

Can also allow merging words

o data base - database

o For short texts like a query, can just regard whole string as one item from which to produce
edits

95

96

3/27/24

16

3/27/24

Language Model Unigram Prior probability Channel model probability

[}
DEAKIN

* Use any of the language modeling algorithms we've learned * Counts from 404,253,213 words in Corpus of Contemporary English (COCA) « Error model probability, Edit probability
* Unigram, bigram, trigram * Kernighan, Church, Gale 1990
* Web-scale spelling correction
Stupid backoff EIEHEES Sp 2L | OB * Misspelled word x = X1, X2, X3... Xm
o Stupid backo
cress 220 | * Correct word w = wi, W2, W3,..., Wn
caress 686 .0000016969
37,038 .0000916207
T : * P(x|w) = probability of the edit
across 120,844 .0002989314
e 12,874 .0000318463 © (deletionfinsertion/substitution/transposition)

97 98 99

Computing error probability: confusion “matrix” Confusion matrix for substitution Generating the confusion matrix
ion of X (incorrect) for Y (corvect)
ot
s (i Levay ot
del(x,y]: count (xy typed as x) oo T AR (W] EEEEE] * Peter Norvig's list of errors
o 3 G0 s 0w o IREREE
ins([x,y]l: count (x typed as xy) HPR H HEEM e R * Peter Norvig's list of counts of single-edit errors
IRERERE IREREEEE] (REREN]
. HEREERE: IRERE R IEEREN]
sublx,yl: count(y typed as x) HERRSF AR SR SRRV RRRRLDRERTS:
HESRREE IRERE RN IR © All Peter Norvig's ngrams data links: hittoi//norvig.com/narams
trans[x,y]: count(xy typed as yx) HETERER IR TEEE IEEREE]
HEEE R R R R R R RN R T E R R R R R
Tt aintodsnoo on 001103
Sl TiSme o000 00w 0t iuw o0 0w
plou 260016001360 41000
X . » . Sl 0% 00an 00000000 c00 00000000
Insertion and deletion conditioned on previous character HEREE R R R R R R R A L R R R AT
HEREE AR R RN N REERR T E A RETREN
V2o 0Swatodoos o2 a0 00003040
Vooror o000 00 000 s 3000000
V22100002001 0000706331 00000
Y 0002000000000 0000030000000
V002t ot is000z2 061 0TH 500100
. = 000700000007 5000020300003 0 e

100 101 102

17

http://norvig.com/ngrams/spell-errors.txt
http://norvig.com/ngrams/spell-errors.txt
http://norvig.com/ngrams/

3/27/24

Channel model Noisy channel probability for acress 2] Noisy channel probability for acress
DEAKIN DERIIN
Can orrect | Error Plx|w) Candidate orrect Plx|w) P(w)
del Curre(etter | Letter Correc etter
el[wi_y,w;] if deleti
Counfie. o i de etion
Countw;—w] actress clet .000117 actress clet .000117 0000231
NS[w;—1,x;] e : cress - a al# 00000144 cress - a alt 00000144 000000544 .00078
P if insertion
countw;—q]’
i—1
P(x\w) = caress ca ac aclca .00000164 caress ca ac aclca .00000164 00000170 0028
Subfe;.wi] if substitution
countfw,] ’ access @ T rlc 000000209 access @ T rlc 000000209 .0000916 .019
transfw;,wi1 across o e elo .0000093 across o e elo 0000093 000299 2.8
munt[iJr , if transposition
[wsz»I] acres = s es|e .0000321 acres = s es|e .0000321 .0000318 1.0
acres - s ssls .0000342 acres - s ss|s .0000342 0000318 1.0

103 104 105

Noisy channel probability for acress @ Using a bigram language model @ Using a bigram language model @
Candi orrect | Error Px|w) P(w) .
Cﬂ"eﬂlon etter | Letter "‘/W}' * “astellar and versatile acress whose combination of sass and glamour...” « “astellar and versatile acress whose combination of sass and glamour...”
(w,
y—— clct .000117 0000231 2.9 Counts from the Corpus of Contemporary American English with add-1 smoothing * Counts from the Corpus of Contemporary American English with add-1 smoothing
cress = a al# 00000144 000000544 00078
« P(actress|versatile)=.000021 P(whose|actress) = .0010 « P(actress|versatile)=.000021 P(whose|actress) = .0010
caress ca ac ac|ca .00000164 .00000170 .0028 . 3
« P(across|versatile) =.000021 P(whose|across) = .000006 * P(across|versatile) =.000021 P(whose|across) = .000006
access @ r rlc 000000209 0000916 019
across o e elo -0000093 .000299 2.8 * P(“versatile actress whose”) = .000021%.0010 = 210 x10-10 * P(“versatile actress whose”) = .000021*.0010 = 210 x10-10
acres - s es|e .0000321 -0000318 1.0 « P(“versatile across whose”) = .000021*.000006 = 1 x108-10 * P(“versatile across whose”) = .000021*.000006 = 1 x10-10
. acres - s ss|s .0000342 -0000318 1.0 .

106 107 108

18

* Some spelling error test sets

109

Solving real-world spelling errors

« For each word in sentence (phrase, query ...)
o Generate candidate set
othe word itself
o all single-letter edits that are English words
o words that are homophones
o (all of this can be pre-computed!)
* Choose best candidates

o Noisy channel model

112

SIT330-770: Natural
Language Processing

Week 4.10 — Real-word spelling errors

Language
Models in

NLP

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env.

create

]
DEAKIN

Real-word spelling errors

e .leaving in about fifteen minuets to go to her

house.

* The design an construction of the system..
* Can they lave him my messages?

* The study was conducted mainly be John Black.

* 25-40% of spelling errors are real words ~ Kukich 1992

110

Noisy channel for real-word spell correction

+ Given a sentence wa,wz,Ws,...,Wn

Generate a set of candidates for each word wi
o Candidate(w:) = fwa, W', W', W"s,..}
o Candidate(w:) = fwz, W', W"2, w"’2,..}

o Candidate(wa) = fwn, Wn , W"n, W"n,...}

Choose the sequence W that maximizes P(W)

111

Noisy channel for real-word spell correction

NSAU
RN@EE

[/
X OaN

v

113

3/27/24

19

http://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings/For_machines
http://aspell.net/test/
http://www.ota.ox.ac.uk/headers/0643.xml
http://norvig.com/ngrams/spell-errors.txt

3/27/24

Noisy channel for real-word spell correction Simplification: One error per sentence Where to get the probabilities
* Out of all possible sentences with one word replaced * Language model
O Wi, W3,ws,w, two off thew © Unigram
© W, Wz, W3,w, two of the o Bigram
o W"3,w2,wi,w, too of thew o etc.
‘y 0. + Channel model
AK§ * Choose the sequence W that maximizes P(W) © Same as for non-word spelling correction
<SS it

115 116 117

Probability of no error Peter Norvig's “thew” example

SIT330-770: Natural

* What is the channel probability for a correctly typed word? _-__ Language Processing)
bt w__ x|w__P(x]w) ° P(x| w)P(w) Week 4.11 - State of the art noisy ’
P the’ 'the”) St Language
thew the ewle 0.000007 0.02 144
00000009 90

Models in
. - Dr. Mohamed Reda Bouadjenek
But this value depends strongly on the application thew thaw ela 0.001 0.0000007 0.7

i thew threw h|hr 0.000008 0.000004 0.03 St Ty, N L P
090 (2 errorin 10 words) I Faculty of Sci Eng & Built Env. >

© .95 (1 error in 20 words)

o If you have a big corpus, you can estimate this percent correct
thew thew 0.95

o

thew thwe ew|we 0.000003 0.00000004 0.0001 sreate

© .99 (2 error in 100 words)]
EAKIN

118 119 120

20

HCl issues in spelling

If very confident in correction

© Autocorrect

Less confident

o Give the best correction

Less confident

o Give a correction list

Unconfident

o Just flag as an error

121

Improvements to channel model

« Allow richer edits (Brill and Moore 2000)
o ent>ant
o ph>f
o le>al

* Incorporate pronunciation into channel

Incorporate device into channel
o Not all Android phones need have the same error model

o But spell correction may be done at the system level

124

State of the art noisy channel

* We never just multiply the prior and the error model
* Independence assumptions > probabilities not commensurate
* Instead: Weigh them

W = argmax P(x | w)P(w)"

weV
* Learn A from a development test set

Phonetic error model

Metaphone, used in GNU aspell

© Convert misspelling to metaphone pronunciation
o *Drop duplicate adjacent letters, except for C."
o “Ifthe word begins with 'KN', 'GN', "PN', 'AE", 'R, drop the first letter.”
© “Drop 'B'if aver 'M"and if it is at the end of the word”

0.

Find words whose pronunciation is 1-2 edit distance from misspelling’s
* Score result list

© Weighted edit distance of candidate to misspelling

o Edit distance of candidate pronunciation to misspelling pronunciation

122

Channel model

* Factors that could influence p(misspelling|word)

© The source letter

o The target letter

o Surrounding letters

© The position in the word

© Nearby keys on the keyboard
© Homology on the keyboard
© Pronunciations

o Likely morpheme transformations

123

Nearby keys

125

126

3/27/24

21

3/27/24

Classifier-based methods for real-word spelling correction

Instead of just channel model and language model

Use many features in a classifier (next lecture).

Build a classifier for a specific pair like:
whether/weather

o “cloudy” within +- 10 words
o___toVERB

o or not

127

22

